什么是分式的意义?
分式的意义有意义、无意义分式.
分式有意义和无意义的条件如下:
(1)分式有意义条件:分母不为0;
(2)分式无意义条件:分母为0;
(3)分式值为0条件:分子为0且分母不为0;
(4)分式值为正
(负)数条件:分子分母同号时,分式值为正;分子分母异号时,分式值为负 .
什么叫分式?
前两位说的那是真分数和假分数.
真分式和假分式是一个与之相近的概念.
分式的分子分母不是数字而是数学表达式,
例如,1/2,4/7是分数,而(a+1)/(a^2+4a+5)则是分式.读做 a的平方加4a加5分之a加1
一个分式的分子的次数低于分母的次数,则这个分式叫做真分式,而一个分式的分子的次数高于分母的次数,则这个分式叫做假分式.
(次数的大小是数学表达式的最高次幂决定的,例如,分式(a+1)/(a^2+4a+5)中,分母的
最高次数项是a^2,它的幂是2,所以它的次数是2,整个分母叫做二次多项式.分子中最高次数项是a,则它的次数就是1.)
所以,上面所举的例子中的分式是真分式.
(a^3+5)/(a+8)就是假分式.
分式有什么用?
1.分式的基本爱质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C(A,B,C为整式,且B、C≠0) 2.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分. 3.分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去.(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去. 注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取
公共字母的最小指数,即为它们的公因式. 4.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式. 5.通分:把几个异分母分式分别化为与原分式值相等的同分母分式,叫做分式的通分. 6.分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母.同时各分式按照分母所扩大的倍数,相应扩大各自的分子. 注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积. 注:(1)约分和通分的依据都是分式的基本爱质 (2)分式的约分和通分都是互逆运算过程.