摘要:
17.导数及其应用(1)导数概念及其几何意义①了解导数概念的实际背景.②理解导数的几何意义.(2)导数的运算①能根据导数定义,求函数(c为常数)的导数.②能利用表1给出的基本初等函...
17.导数及其应用
(1)导数概念及其几何意义
① 了解导数概念的实际背景.
② 理解导数的几何意义.
(2)导数的运算
① 能根据导数定义,求函数 (c为常数)的导数.
② 能利用表1给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.
常见基本初等函数的导数公式和常用导数
运算公式:
(C为常数); , n∈N+; ;
; ; (a>0,且a≠1); ; (a>0,且a≠1).
法则1 .
法则2 .
法则3 .
(3)导数在研究函数中的应用
① 了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).