摘要:
③会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.④会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)...
③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.
④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条
等不作严格要求).
⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).
(2)点、直线、平面之间的位置关系
① 理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.
◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.
◆公理2:过不在同一条直线上的三点,有且只有一个平面.
◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
◆公理4:平行于同一条直线的两条直线互相平行.
◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.
② 以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定.
理解以下判定定理.
◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.
◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.
◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.